Giant magnetocaloric effect in spin supersolid candidate Na₂BaCo(PO₄)₂ (Session 1, Oral)

Junsen Xiang^{1, *}, Chuandi Zhang^{2, *}, Yuan Gao^{2, *}, Wolfgang Schmidt³, Karin Schmalzl³, Chin-Wei Wang⁴, Bo Li², Ning Xi⁵, Xin-Yang Liu², Hai Jin⁶, Gang Li¹, Jun Shen⁷, Ziyu Chen², Yang Qi⁸, Yuan Wan¹, <u>Wentao Jin^{2, #}</u>, Wei Li^{5, #}, Peijie Sun^{1, #}, and Gang Su^{6, #}

¹Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China

²School of Physics, Beihang University, Beijing, China.

³Jülich Centre for Neutron Science at Institut Laue-Langevin (ILL), Forschungszentrum Jülich GmbH, Grenoble Cedex 9, France

⁴Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia

⁵CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China

⁶Department of Astronomy, Tsinghua University, Beijing, China

⁷Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China

⁸State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai,

China

⁹CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijng, China

Supersolid, an exotic quantum state of matter that consists of particles forming an incompressible solid structure while simultaneously showing superfluidity of zero viscosity, is one of the long-standing pursuits in fundamental research. Here we find evidence for a quantum magnetic analogue of supersolid—the spin supersolid—in the recently synthesized triangular-lattice antiferromagnet Na₂BaCo(PO₄)₂. Notably, a giant magnetocaloric efect related to the spin supersolidity is observed in the demagnetization cooling process, manifesting itself as two prominent valley-like regimes, with the lowest temperature attaining below 100 mK. Not only is there an experimentally determined series of critical fields but the demagnetization cooling profile also shows excellent agreement with the theoretical simulations with an easy-axis Heisenberg model. Neutron diffractions also successfully locate the proposed spin supersolid phases by revealing the coexistence of three-sublattice spin solid order and interlayer incommensurability indicative of the spin superfluidity. Thus, our results reveal a strong entropic effect of the spin supersolid phase in a frustrated quantum magnet and open up a viable and promising avenue for applications in sub-kelvin refrigeration, especially in the context of persistent concerns about helium shortages.