Spin-Orbit Excitons in a Correlated Metal Sr₂RhO₄

Lichen Wang,¹ Huimei Liu,^{1,2} Valentin Zimmermann,¹ Arvind Kumar Yogi,^{1,3} Masahiko Isobe,¹Matteo Minola,¹ Matthias Hepting,¹ Giniyat Khaliullin,¹ and Bernhard Keimer¹

¹Max Planck Institute for Solid State Research, Stuttgart 70569, Germany ²Institute for Theoretical Solid State Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany ³UGC-DAE Consortium for Scientific Research (CSR), Indore Centre, University Campus, Khandwa Road, Indore (M.P.) 452001, India

We have carried out inelastic photon scattering measurements to investigate the electronic structure of the correlated metal Sr₂RhO₄, where prior experiments had revealed sharp Fermi surfaces. Using polarization-resolved Raman spectroscopy, we observe unusual but welldefined excitations around 230 meV with A_{1g} and B_{1g} symmetries [1], analogous to those recently discovered in the well-studied spin-orbit Mott insulators Sr_2IrO_4 and α -RuCl₃. We identify them as excitonic transitions between the spin-orbit multiplets J = 1/2 and J = 3/2 of the Rh ions (also known as spin-orbit exciton), which is a direct signature of unquenched spin-orbit coupling of correlated electrons in Sr₂RhO₄. A quantitative analysis of Raman data further reveals that the tetragonal crystal field has a sign opposite to that in insulating Sr₂IrO₄, which suggests that *c*-axis compression of Sr₂RhO₄ may induce a metal-to-insulator transition. In addition, we performed resonant inelastic x-ray scattering at the O K-edge [2] and Rh Ledge [3] to confirm our Raman observations and study the dispersion of this spin-orbit entangled quasiparticle. The observed spectroscopic feature is complementary to prior ARPES experiments on the coherent fermionic quasiparticles near the Fermi level. Combining our datasets, we prove that atomiclike excitations and fermionic quasiparticles can coexist in multiorbital metals. The experiments we have presented on a disorder-free system with a relatively simple electronic structure thus open up a potentially rich source of information on electronic correlations in other multiband metals.

References

- [1] L. Wang, H. Liu et al., Phys. Rev. Lett. 132, 116502 (2024).
- [2] V. Zimmermann et al., npj Quantum Mater. 8, 53 (2023).
- [3] V. Zimmermann, L. Wang *et al.*, unpublished.