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In science and engineering, controlling the evolution of complex physical systems and designing 
their high-dimensional parameters are fundamental tasks, widely applied in disciplines such as 
condensed matter physics and fluid dynamics. Traditional design and control methods often 
require extensive computation due to complex physical dynamics (e.g., adjoint methods); or they 
struggle to adapt to scenarios with strong nonlinearity and strong coupling (e.g., PID). On the other 
hand, recent methods based on deep learning (e.g., deep reinforcement learning) also face 
problems such as adversarial examples and difficulties in optimizing long-term control sequences. 
In this work, we propose a design and control method for complex physical systems based on 
diffusion generative models. We consider the state trajectory of the physical system, design 
parameters, and control sequences as a joint variable and learn their joint probability distribution 
from data via a diffusion model (represented by an energy function). During inference, new 
samples are generated by simultaneously minimizing the learned energy function and a given 
design or control objective. Thus, the generated samples (including design parameters, control 
sequences, and system state trajectories) are both physically plausible and closely approximate the 
optimal design and control objectives. Additionally, we propose further methods that enable the 
generation of more complex design parameters than those used during training and control 
sequences that break free from the training set distribution constraints. We conduct design and 
control experiments in one-dimensional and two-dimensional partial differential equation (PDE) 
systems. In the experiment of designing aircraft wing shapes, although our model was trained only 
with data on the interaction between a single 2D wing shape and fluid, it was able to design 
multiple wing shapes and their formations to improve the lift-to-drag ratio, more complex than 
those in the training. In the control experiments, our method revealed that the "quick closing-slow 
opening" is an efficient movement pattern for jellyfish, consistent with existing findings in fluid 
dynamics, and showed unique advantages over deep reinforcement learning. 

 


